			ame		
			1		
SESSION			LABORATORY		
	General C	ertific	NTERNATIONAL EXAN cate of Education evel and Advanced Lev		
CHEMISTRY				9701/	03
Paper 3 Prac	tical Test			May/June 20	005
			1 b.	our 15 minu	
	wer on the Question F ials: as listed in the Ir				les
	ling practical session		boratory where appropriate,	in the boxes p	rovided.
You may use a soft pend Do not use staples, pape Answer all questions.	cil for any diagrams, g er clips, highlighters, g given in brackets [] a v all working in calcula unnecessary.	raphs lue or t the e tions.	correction fluid.	question.	
You may use a soft pend Do not use staples, pape Answer all questions. The number of marks is You are advised to show Use of a Data Booklet is	cil for any diagrams, g er clips, highlighters, g given in brackets [] a v all working in calcula unnecessary.	raphs lue or t the e tions.	or rough working. correction fluid. and of each question or part		iner's Use
You may use a soft pend Do not use staples, pape Answer all questions. The number of marks is You are advised to show Use of a Data Booklet is Qualitative Analysis note	cil for any diagrams, g er clips, highlighters, g given in brackets [] a v all working in calcula unnecessary. es are provided on pag es are provided on pag	raphs lue or t the e tions.	or rough working. correction fluid. and of each question or part		iner's Use
You may use a soft pend Do not use staples, pape Answer all questions. The number of marks is You are advised to show Use of a Data Booklet is Qualitative Analysis note	cil for any diagrams, g er clips, highlighters, g given in brackets [] a v all working in calcula unnecessary. es are provided on pag es are provided on pag	raphs lue or t the e tions.	or rough working. correction fluid. and of each question or part	For Exam	iner's Use

	This document consists of 7 printed pages and 1 blank page.	
SP (SJF3513) S81256/3 © UCLES 2005	UNIVERSITY of CAMBRIDGE International Examinations	[Turn over

 $\begin{array}{ll} \textbf{FA 1} \text{ is a solution containing 5.00 g dm}^{-3} \text{ of hydrated ethanedioic acid, } H_2C_2O_4.\textbf{x}H_2O.\\ \textbf{FA 2} \text{ is a solution containing 2.37 g dm}^{-3} \text{ of potassium manganate(VII), KMnO}_4.\\ \text{You are also provided with 1.00 mol dm}^{-3} \text{ sulphuric acid, } H_2SO_4. \end{array}$

In the presence of acid, potassium manganate(VII) oxidises ethanedioic acid;

 $2MnO_4^{-}(aq) \ + \ 5H_2C_2O_4(aq) \ + \ 6H^+(aq) \ \rightarrow \ 2Mn^{2+}(aq) \ + \ 10CO_2(g) \ + \ 8H_2O(I)$

You are to determine the value of **x** in $H_2C_2O_4$.**x** H_2O .

(a) Fill the burette with FA 2.

Pipette 25.0 cm³ of **FA 1** into a conical flask. Use the measuring cylinder provided to add to the flask 25 cm^3 of 1.00 mol dm⁻³ sulphuric acid and 40 cm^3 of distilled water.

Heat the solution in the flask until the temperature is just over 65 °C. The exact temperature is not important.

Be careful when handling hot solutions.

Remove the thermometer and carefully place the hot flask under the burette. If the neck of the flask is too hot to hold safely, use a folded paper towel to hold the flask. Run in about 1 cm^3 of **FA 2**. Swirl the flask until the colour of the manganate(VII) ions has disappeared then continue the titration as normal until a permanent pale pink colour is obtained. This is the end point. Record the burette readings in Table 1.1.

If a brown colour appears during the titration, reheat the flask to 65 °C. The brown colour should disappear and the titration can then be completed.

If the brown colour does **not** disappear on reheating, discard the solution and restart the titration.

Repeat the titration as many times as you think necessary to obtain accurate results.

Make certain that the recorded results show the precision of your practical work.

Table 1.1	Titration	of FA 1	with FA 2
-----------	-----------	---------	-----------

final burette reading/cm ³		
initial burette reading/cm ³		
volume of FA 2 used/cm ³		

Summary

 25.0 cm^3 of **FA 1** reacted with cm³ of **FA 2**.

Show which results you used to obtain this volume of **FA 2** by placing a tick (\checkmark) under the readings in Table 1.1.

You are advised to show full working in all parts of the calculations.

(b) Calculate how many moles of potassium manganate(VII), KMnO₄, were run from the burette during the titration.
[A_r: K, 39.1; Mn, 54.9; O, 16.0.]

[2]

[1]

(c) Calculate how many moles of ethanedioic acid, H₂C₂O₄, reacted with the potassium manganate(VII) run from the burette.

(d) Calculate the mass of $H_2C_2O_4$ in each dm³ of **FA 1** [A_r : H, 1.0; C, 12.0; O, 16.0.]

(e) Calculate the mass of water in the 5.00 g of $H_2C_2O_4$.x H_2O .

[1]

[3]

(f) Calculate the value of \mathbf{x} , in $H_2C_2O_4$. $\mathbf{x}H_2O$.

[1]

[Total: 15]

https://xtremepape.rs/

In all tests, the reagent should be added gradually until no further change is observed, with shaking after each addition.

4

Record your observations in the spaces provided.

Your answers should include

- details of colour changes and precipitates formed,
- the names of gases evolved and details of the test used to identify each one.
- You should indicate clearly at what stage in a test a change occurs.

Marks are **not** given for chemical equations.

No additional or confirmatory tests for ions present should be attempted.

Candidates are reminded that definite deductions may be made from tests where there appears to be no reaction.

	Test	Observations [6]
(a)	To 3 cm depth of FA 3 in a boiling-tube, add 2 cm depth of dilute sulphuric acid.	
	Warm the mixture and leave to stand for several minutes. Continue with test (b) .	
	Care – mixtures containing precipitates can "bump" when heated and eject the hot acid from the tube.	
	Use a teat pipette to transfer 1 cm depth of the solution into a test-tube and add an equal depth of distilled water. Add aqueous sodium hydroxide, drop by drop, until there is no further change.	
(b)	To 1 cm depth of FA 3 in a boiling-tube, add 2 cm depth of aqueous sodium hydroxide. Add a piece of aluminium foil and warm the tube.	
	Care – solutions containing sodium hydroxide when heated can "bump" and eject the hot alkali from the tube. Remember to complete test (a) if you have not yet done so.	
(c)	To 3 cm depth of FA 3 in a boiling-tube, add an equal depth of aqueous ammonia.	
	Filter the solution.	
	Add aqueous potassium chromate(VI) to the filtrate.	

	Test	Observations
(d)	To 1 cm depth of FA 3 in a boiling-tube, add 1 cm depth of aqueous silver nitrate.	
	Warm the mixture and carefully pour away the solution. Wash the precipitate that remains with distilled water and discard the water.	
	Add aqueous ammonia to the washed precipitate.	

Use the information in the Qualitative Analysis Tables on pages 6 and 7 to identify the ions present in **FA 3**. For each ion give one piece of evidence that supports your choice.

Cation 1 present in FA 3
Evidence for Cation 1
[1]
Cation 2 present in FA 3
Evidence for Cation 2
[1]
Anion 1 present in FA 3
Evidence for Anion 1
[1]
Anion 2 present in FA 3
Evidence for Anion 2
[1]
[Total: 10]

For Examiner's Use

QUALITATIVE ANALYSIS NOTES

[Key: ppt. = precipitate]

1 Reactions of aqueous cations

ion	reaction	n with	
ΙΟΠ	NaOH(aq)	NH ₃ (aq)	
aluminium,	white ppt.	white ppt.	
Al ³⁺ (aq)	soluble in excess	insoluble in excess	
ammonium, NH ₄ ⁺ (aq)	ammonia produced on heating		
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.	
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.	
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess	
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution	
iron(II),	green ppt.	green ppt.	
Fe ²⁺ (aq)	insoluble in excess	insoluble in excess	
iron(III),	red-brown ppt.	red-brown ppt.	
Fe ³⁺ (aq)	insoluble in excess	insoluble in excess	
lead(II),	white ppt.	white ppt.	
Pb ²⁺ (aq)	soluble in excess	insoluble in excess	
magnesium,	white ppt.	white ppt.	
Mg ²⁺ (aq)	insoluble in excess	insoluble in excess	
manganese(II),	off-white ppt.	off-white ppt.	
Mn ²⁺ (aq)	insoluble in excess	insoluble in excess	
zinc,	white ppt.	white ppt.	
Zn ²⁺ (aq)	soluble in excess	soluble in excess	

[Lead(II) ions can be distinguished from aluminium ions by the insolubility of lead(II) chloride.]

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chromate(VI), CrO ₄ ²⁻ (aq)	yellow solution turns orange with H ⁺ (aq); gives yellow ppt. with Ba ²⁺ (aq); gives bright yellow ppt. with Pb ²⁺ (aq)
chloride, C <i>l</i> ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq)); gives white ppt. with Pb ²⁺ (aq)
bromide, Br [–] (aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq)); gives white ppt. with Pb ²⁺ (aq)
iodide, I ⁻ (aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq)); gives yellow ppt. with Pb ²⁺ (aq)
nitrate, NO ₃ [–] (aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil
nitrite, NO ₂ ⁻ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil, NO liberated by dilute acids (colourless NO \rightarrow (pale) brown NO ₂ in air)
sulphate, SO ₄ ^{2–} (aq)	gives white ppt. with Ba ²⁺ (aq) or with Pb ²⁺ (aq) (insoluble in excess dilute strong acid)
sulphite, SO ₃ ^{2–} (aq)	SO ₂ liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acid)

3 Tests for gases

gas	test and test result	
ammonia, NH ₃	turns damp red litmus paper blue	
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)	
chlorine, Cl ₂	bleaches damp litmus paper	
hydrogen, H ₂	'pops' with a lighted splint	
oxygen, O ₂	relights a glowing splint	
sulphur dioxide, SO ₂	turns potassium dichromate(VI) (aq) from orange to green	

BLANK PAGE

8

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.